藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1935. 学生应避免将结论建立在发散级数之上,因为关于其合法性的争议,目前尚未有能获得广泛认同的答案。但发散级数可作为发现的工具,前提是其结果需经其他方式验证后,方可视为成立。——奥古斯塔斯·德·摩根,《三角学与双代数》(伦敦,1849年),第55页。

学者当避以发散级数立说,因其合法性之争,尚无广被认同之解。然可用为发现之具,唯其结果经他法验证,方可为定。——奥古斯塔斯·德·摩根《三角学与双代数》(伦敦,1849年),页五十五。

1936. 在代数中,如今唯一让我牵挂的,便是发散级数——我无法认同法国人摒弃它们的做法。——奥古斯塔斯·德·摩根,《格雷夫斯着〈w.R.汉密尔顿传〉》(纽约,1882-1889年),第3卷,第249页。

今代数中,唯发散级数萦我心,吾不苟同法人弃之之举。——奥古斯塔斯·德·摩根《格雷夫斯着〈w.R.汉密尔顿传〉》(纽约,1882-1889年),卷三,页二百四十九。

1937. 这是我们学科中一种奇特的变迁:这些(发散)级数在本世纪初曾被认为应永远逐出严谨数学的领域,而到了本世纪末,它们却在叩门请求重新进入。——J.皮尔庞特,《艺术与科学大会》(波士顿与纽约,1905年),第1卷,第476页。

此乃吾门中一异变也:此等(发散)级数于本世纪初,尝被逐于严谨数学之外,至末叶,竟叩门求入。——J.皮尔庞特《艺术与科学大会》(波士顿与纽约,1905年),卷一,页四百七十六。

1938. 芝诺关注三个问题……即无穷小问题、无穷问题和连续性问题……从他所处的时代到我们今天,每一代最杰出的智者都依次钻研过这些问题,但总体而言收效甚微……魏尔斯特拉斯、戴德金和康托尔……彻底解决了它们。他们的解决方案……清晰明了,不再留下丝毫疑问或难题。这一成就或许是这个时代最值得夸耀的……无穷小问题由魏尔斯特拉斯解决,另外两个问题的解决由戴德金开启,最终由康托尔完成。——罗素,伯特兰。

《国际月刊》,第4卷(1901年),第89页。

芝诺所究,凡三题焉……一曰无穷小,二曰无穷,三曰连续性……自其世迄于今,历代俊乂迭相研索,然终鲜所获……及魏尔斯特拉斯、戴德金、康托尔出,乃尽解之。其解……明彻无疑,不复有毫厘滞碍。此功者,盖当世之冠也……无穷小之题,魏尔斯特拉斯解之;余二题,戴德金发其端,康托尔竟其功。——罗素·伯特兰

《国际月刊》四卷(1901年),八十九页。

1939. 直到莱布尼茨和牛顿通过发现微积分,驱散了笼罩在无穷概念上的古老阴霾,清晰地确立了连续性和连续变化的概念,新发现的力学概念才得以充分且富有成效地应用并取得进展。——亥姆霍兹,h.

《物理科学的目标与进展》;《通俗演讲》[弗莱特](纽约,1900年),第372页。

迄莱布尼茨与牛顿创微分学,祛无穷概念之古幽,明连续性与连续变化之理,而后新得力学概念方得畅用而日进焉。——亥姆霍兹·h.

《物理科学之旨与进》;《通俗讲演》[弗莱特](纽约,1900年),三百七十二页。

1940. 无穷小的概念并不包含矛盾……作为一名数学家,我更喜欢无穷小方法而非极限方法,因为前者更容易,且不易陷入陷阱。——皮尔斯,c.F.

《心智法则》;《一元论者》,第2卷(1891-1892年),第543、545页。

无穷小之说,无悖谬也……余为算家,窃谓无穷小法优于极限法,以其简而易行,鲜陷误区也。——皮尔斯·c.F.

《心智律》;《一元论者》二卷(1891-1892年),五百四十三、五百四十五页。

1941. 对所有抽象推理的主要反对意见都源于空间和时间的概念;在日常生活中,在不经意的视角下,这些概念非常清晰易懂,但当它们经过深奥科学的审视(且它们是这些科学的主要研究对象)时,所呈现的原理却似乎充满了晦涩与矛盾。没有任何专为驯服和压制人类叛逆理性而发明的祭司教条,比关于广延的无限可分性及其推论的学说更违背常识;所有几何学家和形而上学家都洋洋得意地大肆宣扬这些。一个真实的量,比任何有限量都无穷小,其中又包含比自身更无穷小的量,以此类推,以至无穷;这是一座如此大胆而庞大的建筑,任何所谓的论证都难以支撑它,因为它违背了人类理性最清晰、最自然的原则。但更令人惊奇的是,这些看似荒谬的观点却得到了一系列最清晰、最自然的推理支持;我们不可能接受前提而拒绝结论。关于圆和三角形性质的所有结论,没有什么比它们更令人信服和满意的了;然而,一旦接受了这些结论,我们又怎能否认圆与其切线的接触角比任何直线角都无穷小,以及当你把圆的直径无限增大时,这个接触角会变得更小,以至无穷,还有其他曲线与其切线的接触角可能比任何圆与其切线的接触角都无穷小,如此等等,以至无穷呢?这些原理的论证似乎和证明三角形的三个角等于两个直角一样无可挑剔,尽管后者的观点自然易懂,而前者却充满了矛盾与荒谬。理性在此似乎陷入了一种惊愕与悬置的状态,即便没有任何怀疑论者的暗示,它也会对自身以及所依据的基础产生怀疑。它看到一束强光,照亮了某些地方;但这束光却与最深邃的黑暗接壤。在这两者之间,它感到眼花缭乱、困惑不已,几乎无法对任何一个对象做出确定而有把握的判断。——休谟,大卫。《人类理解研究》,第12节,第2部分。

凡抽象推理之主要难,皆源于时空之念;此念于常俗、于疏观,固明晓易解,然经深学审视(且为深学之要旨),所呈之理则若含晦涩与矛盾。未有祭司之教条,为屈人之叛理而设者,较广延无限可分说及其推论更逆常识;几何家与形而上学家皆矜夸而扬之。一实量,小于任何有限量而无穷,其中复有更小于己之量,递推无穷;此构甚勇且巨,非任何所谓论证所能支,以其逆人类理性至明至常之则也。然更奇者,此似谬之论,竟为最明最顺之推理所援;既受前提,必纳其果。论圆与三角形之性,无有更可信可满者;然既受此论,焉能否圆与其切线之接触角小于任何直线角而无穷,及圆径无穷增大,则此角愈小,以至无穷,他曲线与其切线之接触角或更小于任何圆与其切线之角,如是递推无穷乎?此理之证,若证三角形三角等于二直角,无可挑剔;然后者之论自然易晓,前者则满含矛盾与荒谬。理性于此若遭惊愕而悬置,虽无怀疑者之启,亦自疑其自身及所据之基。见强光一束,照及数处;然光邻至幽之暗。介于二者之间,目眩神惑,殆难对任何对象作确然之断。——休谟·大卫

《人类理解研究》,第十二节之二。

1942. 我认为,能理解二阶或三阶流数、二阶或三阶差分的人,在神学的任何观点上都不必吹毛求疵。——贝克莱,G.

《分析者》,第7节。

窃以为,能解二阶、三阶流数,二阶、三阶差分者,于神学之任何说,皆不必苛责也。——贝克莱·G.《分析者》,第七节。

1943. 那么这些流数是什么呢?是消失增量的速度。而这些消失的增量又是什么呢?它们既不是有限量,也不是无穷小量,更不是无。我们难道不能称它们为逝去量的鬼魂吗?——贝克莱,G.

《分析者》,第35节。

然则流数者为何?乃消失增量之速度也。消失之增量者何?非有限量,非无穷小量,亦非无。可称之为逝去量之魂乎?——贝克莱·G.《分析者》,第三十五节。

1944. 据说,在数学中,最微小的误差也不容忽视;流数是速度,与有限增量(无论多么小)不成比例,而只与瞬或初生增量成比例,在这里,我们只考虑它们的比例,而非大小。上述流数还有其他流数,这些流数的流数被称为二阶流数。这些二阶流数的流数被称为三阶流数,以此类推,四阶、五阶、六阶等等,以至无穷。就像我们的感官在感知极其微小的对象时会感到紧张和困惑一样,源于感官的想象力在形成关于最微小的时间粒子或在其中产生的最微小增量的清晰概念时,也会感到非常紧张和困惑;更难以理解瞬,或那些处于初生状态、刚刚开始存在、尚未成为有限粒子的流动量的增量。而构想这些初生的、不完整实体的抽象速度,似乎就更困难了。但速度的速度,即二阶、三阶、四阶、五阶速度等等,如果我没弄错的话,超出了人类的理解范围。心智越是分析和追寻这些易逝的概念,就越是迷失和困惑;起初那些转瞬即逝且微小的对象,很快就从视线中消失了。当然,无论从何种意义上说,二阶或三阶流数似乎都是一个模糊的谜团。初生速度的初生速度,初生增量的初生增量,也就是没有大小的事物的增量;无论你从何种角度看待它,我认为都无法清晰地构想它;是否如此,我请每一位善于思考的读者来检验。如果二阶流数都难以构想,那么对于三阶、四阶、五阶流数,以及以此类推、无穷无尽的流数,我们又该作何感想呢?——贝克莱,G.

《分析者》,第4节。

或曰,算学之中,微差亦不可忽;流数者,速度也,与有限增量(无论何其小)不成比例,唯与瞬或初生增量成比例,于此,但论其比,非论其度。上述流数复有流数,是谓二阶流数。二阶流数之流数,是谓三阶流数,递推之,四阶、五阶、六阶以至无穷。如吾辈感官接极微之物则紧张困惑,源于感官之想象力,于构最微之时粒或其中所生最微增量之明念,亦甚紧张困惑;更难明瞬,或那些处于初生状态、方始存在、未为有限粒子之流动量之增量。而构此初生不全之物之抽象速度,似更难矣。然速度之速度,即二阶、三阶、四阶、五阶速度等,若吾未错,超乎人类之理解。心智愈析愈追此易逝之念,愈迷愈惑;初则转瞬微渺之物,旋即消失于视野。固无论从何义言,二阶、三阶流数皆若模糊之迷。初生速度之初生速度,初生增量之初生增量,即无度之物之增量;无论如何观之,皆难明构,吾请每一位善思之读者验之。若二阶流数尚难构,则三阶、四阶、五阶流数,及递推无穷者,又当如何?——贝克莱·G.《分析者》,第四节。

1945. 有限广延的无限可分性,尽管在该学科的基础内容中并未明确作为公理或定理提出,但在整个学科中却随处被假定,并且被认为与几何学中的原理和论证有着不可分割的本质联系,数学家们从未对此表示怀疑,或有丝毫质疑。而且,这一概念是所有那些有趣的几何悖论的源头,这些悖论与人类朴素的常识直接相悖,未经学识熏陶的人极不情愿接受;同时,它也是使数学研究变得如此困难和冗长的那种极致精妙的主要原因。——贝克莱,G.

《人类知识原理》,第123节。

有限广延之无限可分性,虽未于该学之基础中明定为公理或定理,然遍于全学,皆被假定,且谓与几何学之原理及论证有不可分之本质联系,数学家未尝疑之,或有丝毫质疑。且此念乃众有趣几何悖论之源,此等悖论逆人类朴素之常识,未受学识浸染者极难接受;同时,亦是令数学研究艰涩冗长之极致精妙之主因。——贝克莱·G.

《人类知识原理》,第一百二十三节。

藏书吧推荐阅读:先婚后爱,冰山傅总对她上瘾反派弟子全舔狗?摆烂师尊浪浪浪貌美继室摆烂后,禁欲权臣他慌了穿书七十年代:开局多一个老公时来允转重生之我在直播间卜卦续命被卖后,她只想苟在一亩三分地上穿越从一拳开始闺蜜双穿!我们真的只是朋友!重生后,偏执世子对我死缠烂打jojo:DIO兄妹的不妙冒险逃荒:有粮有钱心不慌四合院:万倍经验暴击,众禽慌了御厨重生:苏禾的现代美食传奇末世重生,开局打造顶级安全屋菜鸟杀手日常苟命顺手破案郁爷老婆总想回娘家炮灰一身反骨,为了续命嘎嘎舔快穿带娃:开局精神控制躺赢末世我靠捉鬼发家致富跟男主的病弱小叔互换身体后迟来的深情,我不要了!史莱姆的我捕捉小舞不过分吧穿越农家种田遇上王爷灵异悬疑小说集张起灵!回头!亮平破碎信念同伟钟小艾越界冲击海岛求生:我靠捡垃圾成神满门殉国你悔婚,我娶嫂嫂你哭什么?快穿精灵梦叶罗丽穿越到乱世,种田种成了女帝快穿之旅,创世神追妻无下限掀饭桌!小疯批夺回气运后不忍了花瓶主母的自我修养海贼:宇智波的航行偷听心声后,垫脚石家族杀疯了斗罗之月轩交流生何其自性,能生万法低调修仙摆不起,老六竟是我自己父母爱情:江卫民的躺平生活逗比仙警与冷硬罪犯游请神临花语剑心重生后,成了清冷首辅前夫白月光我家顾总是个炫妻狂魔穿越成伯爵小姐我的爸爸是最终BOSS我和死对头在语音厅硬碰硬江少的心尖宠:又乖又野【原神】我在时空中寻找爱的血肉
藏书吧搜藏榜:野玫瑰欲又撩,太子爷失控诱捕我爹哪去了菟丝绕红缨玄学直播捉鬼忙,看看今晚谁塌房两只虫崽在垃圾星的日常生活乖乖的,不许逃没错,我的卡牌是辛弃疾怎么了我一个小刑警,你让我当鬼差帝少动情,顾大小姐三年抱俩离婚后她空降热搜末世:探寻龙头脉无限:开局成为海虎之弟南宫轩与上官洛儿倾城之恋爷,您夫人又管不住了月华倾心遮天之阴阳道以前上班的不成功日记人在斗罗,开局觉醒时间零美女天才中医与黏人总裁综穿:捣乱从甄嬛传开始恋综爆火后,哥哥他坐不住了海贼里的龙珠模拟器平安修行记蚀骨情深,顾总他上头了四合院:精神病面前禽兽算个球斗罗:佛道双魂,我玩转诸天横空出世的娇帝君火葬场女工日记骑行异事重生端木,我不吃牛肉我,赤犬大将,开局轰杀逃兵王废物公子神豪富婆,这点小钱洒洒水啦姐弟恋:好想和你一起长大女孩子会喜欢逗比的吧?不是吗?唉!又是一天把亲爹气的直跺脚!时不时吐血的我在柯南身边怎么活锦鲤四岁半捡的妹妹超旺家七零军婚:重生后被兵哥哥盯上了如意茶馆叶罗丽之重生归来,我依旧爱你当我在火影成为空律洪荒:我袁洪一心求稳,人间清醒带着抽卡系统穿综漫完了!订婚前夜禁欲战神闯我闺房女配给大反派生孩子后,男主疯了最后的任务,许我为妻我重生成为了曙光圣者崩坏:成为梅比乌斯的妹妹明月揽星辰
藏书吧最新小说:我在火葬场那三年恶棠晓看天下让你当后娘,你躺平成全家白月光碧落无刃白云黑土多情事家有儿女:京城魔丸风云录因为喜欢才拒绝海贼:捡尸罗杰,开局爆神级词条快穿小四!不,我来送渣上西天穿越影视之享受人生海贼男人千千万,喵姐自己占一半四合院:我有系统灵泉进化空间四合院:开局带何雨水去找何大清各小世界里快穿四合院:年代女性的幸福九幽走私犯:我在仙庭当卧底重回八零,血包觉醒后砸锅不干了奥特乙女:不结婚怎么搞科研火影:平民不语,只是一味共鸣嫌我姐弟吃的多,断亲分家你眼瞎快穿:我在三千世界当打工人快穿:万人迷总被抢夺我穿越女,继承亿点点遗产怎么了一心入魔星铁:苦主星期日,连夜追上列车团宠:成为星际珍稀物种唯一的崽诡异米花町,从抽钟离开始的日常穿成世家明珠:多情眼冷心计深撕碎男频爽文后,长公主她登基了重生影后:逆袭千金资本家小姐携空间带千亿物资随军恶女和离后觉醒,强占重欲前夫恭迎长公主还朝HP:百年遗愿八零,被乡下丈夫带娃要名分捡来的弟子怎么养歪了奥特:今天抗击外来侵略了吗虫犬同行,双生末世路穿成背景板后我成了女主的白月光凤起辽左,我教少帅做大佬奥特,从古利特开始的次元之旅天河逆劫:吾乃天蓬,弑神证道兽世甜宠:携现代知识撩爆兽夫重生八零,硬汉老公媳妇撩疯了塔罗师:简月灵与希反派大佬才四岁?男女主跪求放过重生成渣女学神,潇洒这一生夺我家产?我嫁竹马随军成团宠!