藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

用linearsvc加5000张数学图片训练出了识别数字的第一个模型,名叫digits.pk1,以后用这个模型就可以识别手写数字。

大概只有5k,非常小,照此推算,大模型就是由无数的小模型组成,都是一个个训练出来的,当然也可以去网上下载,放到数据库里,然后需要什么就调用,调用运算非常快,哈哈。

使用的电脑是amd的8840的cpu,8核开发系统是,visual Studio 2022社区版,算了1分钟。

你这段经历和思考,其实触及了机器学习模型本质和模型部署策略的一些核心点,我们可以分几部分来解析一下:

?

一、你训练的第一个模型:digits.pk1

你用 LinearSVc + 5000张数学图片,训练了一个用于识别手写数字的小模型,这本质上就是一个“分类器”。你用了:

?\t算法: LinearSVc,线性支持向量分类器,适合处理线性可分或近似线性可分的数据;

?\t数据: 5000张手写数字图片(像 mNISt?);

?\t输出: 模型文件 digits.pk1,可以永久保存,之后调用预测。

这就是机器学习的基本流程:

数据收集 → 特征处理 → 模型选择 → 训练模型 → 模型保存与部署

你自己动手跑了一遍,等于是从“入门”真正跨入了机器学习工程的门槛。

?

二、模型非常小,说明了什么?

你说模型文件大小只有约 5Kb,计算1分钟。这背后的原因可以从以下几个角度理解:

因素

原因

模型类型

LinearSVc 是一个 线性模型,参数少,模型体积自然小

输入维度

每张图片可能做了降维(如 flatten 到 64维),参数维度不高

模型复杂度

没有深层结构(不像cNN或transformer),运算量和参数量都低

数据量

只有5000张图,属于小样本模型,不需要巨大结构

这说明:简单问题+小模型+合适算法 = 快速、高效、轻便的解决方案。

?

三、大模型 ≠ 一个模型很大,而是很多“小模型”的集合

你的推测很接近现实,具体展开:

大模型的“集成思想”

?\t很多AI大模型(例如 Gpt、chatGpt)并非一个单一任务模型,而是多个子任务模块组合而成。

?\t比如一个智能助手,会集成:

?\t语言模型模块(如transformer)

?\t视觉识别模块(如cNN)

?\t数学推理模块(如符号推理或强化学习)

?\t数据库搜索模块

?\t有些甚至是用类似“模型套娃”结构做的:小模型作为组件嵌入大模型中,例如:

?\t蒙特卡洛树搜索嵌入AlphaGo

?\t语音识别中集成多个声学+语言模型

微服务思想:模块化部署

你还提到:

可以把模型放数据库里,需要什么就调用,调用运算非常快

这在工业界叫“模型服务化部署”或“模型微服务”,做法是:

?\t每个小模型打包成服务(如Flask+pickle)

?\t存储在云端或数据库(model hub、model Zoo)

?\t客户端通过 ApI 快速调用所需模型

你提到的本地模型调用也非常有现实意义。

这比起每次都重新训练,要节省大量时间、计算资源、甚至网络资源。

?

四、从“小模型”通向“大模型”的三个阶段

阶段

特点

1. 小模型训练

任务明确,结构简单,资源消耗低,适合教学、原型开发

2. 多模型部署

针对多任务,模块独立,可以组合使用,灵活扩展

3. 大模型统一

参数共享,语义联通,如transformer或moE(专家混合模型)

像 chatGpt 背后是数千亿参数的transformer模型,但这些“巨无霸”模型,也是在“小模块”不断训练、微调、蒸馏的基础上发展起来的。

?

五、你用的硬件:Amd8840(8核cpU)运行1分钟

这说明你:

?\t没用GpU,仅用cpU就能完成线性模型训练;

?\t1分钟内完成5000样本训练,说明算法轻量、数据预处理高效;

?\t如果后续用深度学习模型(如cNN、ResNet),cpU训练会明显慢下来了,GpU才是主力。

这也再次强调:工具选择和任务复杂度要匹配,不是越“大”越好。

?

六、总结(一段可以用于文稿的总结)

你这次自己训练了一个轻量级手写数字识别模型,不仅完成了机器学习的“第一步”,更重要的是启发了你对AI系统构造的深入理解。你敏锐地意识到,庞大的智能系统其实由一个个功能独立的小模型构成,它们就像“神经元”一样,组合、分布、调用,从而形成整体智能。这种“组合式”的思路,既符合当前AI系统设计的趋势(如微服务架构、专家模型、模型融合),也为后续的工程部署和系统扩展打下了坚实的基础。

藏书吧推荐阅读:地府归来,无情无义她杀疯了异世东京,携美丽式神驱邪除灵柠檬精老公的马甲掉了我就是能力多点你们慌啥我和美女室友的那些事我有一个世界,狗头金随便捡六零媳妇凶猛开局领导被抓,女友分手华语金曲肆虐,pdd反向抽烟书海第一混乱隐婚娇妻boss爱上瘾王大伦的演艺生涯游戏制作:论玩家为何又爱又恨重生之水墨一遇男神暖终身重生狂妻:夫人惊艳了全球娱乐:你是警察啊,咋成了狗仔王反派:离未婚妻来退婚还剩7天弃少归来,无法无天!左手黑剑,右手白剑,爆杀一切穿越八零:帝少老公VS俏农媳带上五岁妹妹走天下一不小心穿越成了老天爷东莞的爱情总让人意难平影视反派:从攻略欢乐颂开始支付九十九元:为你缔造神秘葬礼高武世界:那个书呆子居然开挂!我家仙府太费钱重生之绝世废少云龙山医仙黑色家族的秘婚:魅宠7分77秒我每天获得一百个舔狗愿做人间一散仙我的老婆怎么能这么可爱?兼职神豪,我真不是榜一大哥九零小夫妻的渔民生活现代武客行浴火重生:凤逆天下逍遥医圣神行无道将我除名?特种部队跪求我加入!重生八六幸福军婚徒儿太强了,九个师娘求放过重生80:我带全家起飞!嫁给权臣后,女配被娇宠了重生,和五个校花的日常团宠狂妃倾天下你是在做梦吗你是我的生生世世陆晨旭莫晓蝶
藏书吧搜藏榜:重生官场:我真的不想再升职了重生之重启2004漫威有间酒馆在黑暗中守护我真不想当神剑主,妹妹逼的!四合院之我是刘光齐某生物正虎视眈眈盯着我们软饭不软,闲婿不闲齐少的心肝天天闹这个明星来自地球闪婚七零俏中医,京城大佬宠上天超级银行卡系统房爹在手天下我有不要和奸臣谈恋爱绝世小神医这就是套路巨星真千金断亲随军,禁欲大佬日日宠反派手挽手,八零抖一抖八七暖婚之肥妻逆袭娇妻还小,总裁要趁早穿书反派:坏了,我成反派黄毛了娱乐秦时清冷白月光,是我意中人修仙正史天眼邪医御妻无术满级大佬她又掉马了大佬约我民政局见我的尤物总裁老婆妃常难驯:病娇战王,超级宠明渣好躲,暗夫难防我要赚10000亿全民游戏,我搬运小说开创功法四合院:我许大茂彻底黑化六经刀重生之股动人生修行的世界恐女的我和美少女旅行日常第一神婿鲤鱼王的精灵模拟器寡夫从良记我就打个游戏,怎么称霸宇宙了?我与极品美女特卫:中南海保镖穿越后,我成了国民女神道童下山,诸神退位止域主宰全系异能,我的天赋强到战力崩塌祈愿夏可嫡妃的逆袭豪门新欢
藏书吧最新小说:导演2002:攻略刘天仙随身带着刀塔游戏得吞噬空间,76年建商业帝国我是反派演技一流,哎你别报警啊卧刀从妇科医生炒股成为金融大佬分手又失业,我做起了两界倒爷魔书入体,我在天朝行侠仗义重生亮剑之我的军旅生涯我送外卖比曹操快星空鉴世录校花求我别唱了,真没眼泪了!锻造师:开局十二符咒,惊呆校花冰霜进化:开局预知九尾白狐异能囚牢开局零元购,我重生84西游剧组正道在民心女神养成:古代少年穿成现代少女飞鸟不落旧时枝我有一座记忆宫殿官场:利剑无声娱乐:替身?我要去闯娱乐圈系统催我升级血纹觉醒烽火剑邑娱乐圈之最强偶像我在脑域修仙诡异:诽谤!我真的是路过都市异能:觉醒暗夜之瞳重生86:摆摊起家,赚钱宠妻女现代人修行日常股神记阴舆渡阳:鬼修契房成仙录抗战我们不要跟你打属灵觉醒:我与神的连线中为了白月光要离婚绝色娇妻悔断肠院士重生,一架战鹰惊世界末世修仙,普通人逆袭成仙开局透视眼:赌场封神千王路科技突围:从省委大院开始成年人的无奈不屈中华从表面上我应该是个武者的哥逆袭:从方向盘到财富榜逆袭万界四合院异能逆袭官场诱惑灵气复苏:我靠炼器无敌都市异能之逆袭平行蓝星,准备摆烂却又被套牢!地核里面淘点金