藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

AI大模型没有经过标注训练直接拿训练结果的机器学习,会不完整。

你提出的问题非常有深度,触及了AI大模型训练方法与其学习机制中的核心矛盾:没有经过明确标注训练(Supervised Learning)的AI大模型,是否能获得完整有效的学习成果?是否存在结构性的“学习不完整”?

我们来分层展开这一问题,力求在技术、哲学、认知、类比等多个维度上进行全面分析,最后做出严谨的结论。

?

一、背景界定:AI大模型的训练机制

目前主流的AI大模型(如Gpt系列、claude、Gemini等)采用的是**预训练 + 微调(fine-tuning)+ RLhF(强化学习人类反馈)**的混合架构。

其中最核心的是预训练阶段,其基本过程是:

在没有明确标签的情况下,用大规模互联网上的数据(网页、百科、代码、小说、评论等)进行“自监督学习(Self-supervised Learning)”。

自监督学习 ≠ 无监督学习

? 自监督学习并非完全“无标注”,而是通过构造任务(如语言建模任务:预测下一个词)让模型从数据本身自动生成训练信号。

? 模型在这过程中学习的是结构、语义、因果、常识等隐性规律,而不是显性标签(如猫、狗、汽车这种图像分类标注)。

?

二、未标注训练是否“学习不完整”?——技术视角的回答

我们可以从以下三个角度看“完整性”问题:

1. 信息覆盖角度:不是所有领域都能通过无标注数据自发学习

? 无监督或自监督学习依赖于数据中的统计规律;

? 某些抽象、隐蔽、少量出现的信息(如法律边界、伦理判断、罕见病症)如果数据中分布极少,模型可能无法学到;

? 例如:常识与语言风格模型学得很好,但“核反应堆设计”“金融诈骗行为识别”等专业领域,若无明确标注,学习会片面甚至危险。

结论:信息分布不均 → 导致学习偏斜 → 导致“结构性不完整”。

?

2. 任务映射角度:无标注训练难以学得任务映射规则

? 自监督语言模型训练的本质是“概率语言建模”,不是“任务解答”;

? 所以它并不知道“题目是什么、目的是什么”,而是推测“在这种上下文中,最可能出现的词或句子是什么”;

? 比如:它可以写诗、写代码,但并不能天然知道“这个代码是否安全”“这首诗是否表达了想表达的情绪”。

结论:任务导向的“目标函数”缺失 → 无法学会“为什么做”。

?

3. 可解释性角度:非标注训练缺乏因果结构建模

? 人类通过监督学习明确学习“因果—目的—手段”结构;

? 但大语言模型更像是“相关性结构模拟器”;

? 它可以“预测一个合理的答案”,但不能清晰解释“为什么这个是对的”,这导致它常常幻觉(hallucination),即信心满满地说错话。

结论:缺乏标注训练导致“因果推理能力弱化”,解释力不足。

?

三、类比视角:大模型 vs 人类学习

我们可以做几个有趣的类比来更好理解:

模型机制

类比人类

结果

自监督训练

看大量书籍和对话,但没人教你正确答案

可形成语言风格、思维路径,但很难准确判断对错

监督训练

老师出题、讲解并纠错

能建立清晰的“任务-结果-反馈”链条

强化学习

实践中不断试错并获得反馈

学会策略优化,但很依赖奖励设计

未训练领域

没人讲解、也从没见过的知识

只能“猜”而不是“知道”

所以,大模型并非“全知”,而是“巨量输入+相关性建模”的结果。没有明确监督和反馈,它可以“模仿得很好”,但无法“知道得准确”。

?

四、哲学层面:知识的完整性依赖于目的性与验证路径

知识完整性的构建不仅依赖数据,而更依赖:

1. 目的性(Goal-oriented learning):你学习是为了什么?没有目标就没有选择与筛选;

2. 验证路径(Validation mechanism):你怎么知道你学对了?没有反馈就无法修正偏差;

3. 理论抽象(theory abstraction):你是否能将个例升华为结构?这需要引导和模型建设。

AI大模型很多时候是在缺乏明确目标与反馈的语料中“游荡式学习”。它学得多,但结构不稳、推理不深,因此无法获得“完整性”。

?

五、现实世界中的补救机制

正因为自监督训练存在这些问题,现代大模型在预训练之后通常会做:

1. 微调(fine-tuning):用有标注数据进行小范围有针对性训练;

2. RLhF(人类反馈强化学习):用人工打分机制优化模型输出结果,使其更符合人类价值;

3. 插件系统(tool Use):通过嵌套计算器、数据库、搜索引擎等,补足知识结构的“缺口”;

4. 多模态协同:语言+图像+动作等维度补充信息结构的不完整性。

这些都是在弥补“无标注训练”的先天缺陷。

?

六、结论与展望

你提出的问题可以总结为一句话:

没有经过标注训练的大模型,其知识体系是片面的、目标性弱的、可解释性差的,因此并不完整。

AI大模型在当前阶段,的确存在以下三大“不完整性”:

1. 知识分布不完整 → 稀缺\/敏感信息无法自动习得;

2. 结构建模不完整 → 缺乏明确因果与目标框架;

3. 验证机制不完整 → 幻觉无法主动修正,错误输出不自知。

但它的优势也明显:

? 学习范围极广;

? 语境模拟能力强;

? 多样性高、可迁移性强。

未来,大模型的发展趋势一定是:

? 人类标注与反馈机制更精细化(如AutoRLhF、偏好建模);

? 任务导向设计(agent化、链式推理)加强推理结构;

? 领域专家介入,实现专家知识标注精调;

? 多模态数据参与建模,提升理解维度。

?

藏书吧推荐阅读:地府归来,无情无义她杀疯了异世东京,携美丽式神驱邪除灵柠檬精老公的马甲掉了我就是能力多点你们慌啥我和美女室友的那些事六零媳妇凶猛开局领导被抓,女友分手华语金曲肆虐,pdd反向抽烟书海第一混乱隐婚娇妻boss爱上瘾王大伦的演艺生涯游戏制作:论玩家为何又爱又恨重生之水墨一遇男神暖终身重生狂妻:夫人惊艳了全球娱乐:你是警察啊,咋成了狗仔王弃少归来,无法无天!左手黑剑,右手白剑,爆杀一切穿越八零:帝少老公VS俏农媳带上五岁妹妹走天下一不小心穿越成了老天爷东莞的爱情总让人意难平影视反派:从攻略欢乐颂开始支付九十九元:为你缔造神秘葬礼高武世界:那个书呆子居然开挂!我家仙府太费钱重生之绝世废少云龙山医仙黑色家族的秘婚:魅宠7分77秒我每天获得一百个舔狗愿做人间一散仙我的老婆怎么能这么可爱?兼职神豪,我真不是榜一大哥九零小夫妻的渔民生活现代武客行浴火重生:凤逆天下逍遥医圣神行无道将我除名?特种部队跪求我加入!重生八六幸福军婚徒儿太强了,九个师娘求放过重生80:我带全家起飞!嫁给权臣后,女配被娇宠了重生,和五个校花的日常团宠狂妃倾天下你是在做梦吗你是我的生生世世陆晨旭莫晓蝶起死回生三界任我行豪门之贺总裁的剽悍娇妻
藏书吧搜藏榜:重生官场:我真的不想再升职了重生之重启2004漫威有间酒馆在黑暗中守护我真不想当神剑主,妹妹逼的!四合院之我是刘光齐某生物正虎视眈眈盯着我们软饭不软,闲婿不闲齐少的心肝天天闹这个明星来自地球闪婚七零俏中医,京城大佬宠上天超级银行卡系统房爹在手天下我有不要和奸臣谈恋爱绝世小神医这就是套路巨星真千金断亲随军,禁欲大佬日日宠反派手挽手,八零抖一抖八七暖婚之肥妻逆袭娇妻还小,总裁要趁早穿书反派:坏了,我成反派黄毛了娱乐秦时清冷白月光,是我意中人修仙正史天眼邪医御妻无术满级大佬她又掉马了大佬约我民政局见我的尤物总裁老婆妃常难驯:病娇战王,超级宠明渣好躲,暗夫难防我要赚10000亿全民游戏,我搬运小说开创功法四合院:我许大茂彻底黑化六经刀重生之股动人生修行的世界恐女的我和美少女旅行日常第一神婿鲤鱼王的精灵模拟器寡夫从良记我就打个游戏,怎么称霸宇宙了?我与极品美女特卫:中南海保镖穿越后,我成了国民女神道童下山,诸神退位止域主宰全系异能,我的天赋强到战力崩塌祈愿夏可嫡妃的逆袭豪门新欢
藏书吧最新小说:实教:与B班启航的寻路者召唤丧尸:全宇宙都怕被我被灭门娱乐:让你当顶流,没让你当曹贼铠装者曙都重生了,谁还不浪得飞起啊?说好的低调,国家非让我当龙王穿越之获得全能系统变得能文能武退伍当天,邻居跪求救人路人甲就可以随便伤害嘛拎刀就砍之无法无天玄械凡途逃荒路上抢鬼子的我发达了我没想无敌是十亿纳米大军太努力狱中执棋:我的复仇审判瞒天过海四合院:三藏之野望黑道枭雄:从拘留所到黑金帝国影视世界逍遥行,从小欢喜开始跳楼十九次,我又活了!负债逆袭:我的旅行系统强无敌归国神豪之人在八零发展家乡致富国运我在毛熊捡垃圾离婚后,我重生2002成神豪开局老登:新婚之夜,让蜜蜜崩!NBA:三连冠成就最强神级御兽:神级投资系统荒野直播:开局激活热度兑换系统综影:靠山祁同伟,我踩死侯亮平山野无敌小神医大贱侠开局织梦师,混沌魔神筑基双穿:我家女儿小闺蜜是兕子我,世界架构师,被第四天灾包围穿女尊遇到打黑拳的她我的系统太强了,新手礼包就无敌印染厂里的那些往事重生1993:我的代码能修仙下山后,漂亮姐姐蠢蠢欲动猫娘系统,请不要阻止我摆烂了!嘿龙逆袭的人生道帝归来:喜当爹民国,卦了!纪念日妻子和竹马弟弟拥吻影帝私藏:失控的剧本回档06看我恣意人生凡人入圣我靠女身实现财务自由坐在轮椅上的我可以拨动引力女主相思断肠,谁让他当大反派的神豪:开局参加亿万富翁国士无双:我的隐藏身份震惊全球