藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

我们的最后两片拼图,陈氏类和黎奇曲率,是彼此相关的,它们是源自于几何学家尝试将黎曼面从复一维推广到多维,并从数学上刻画这些推广结果之间差别的努力。

这把我们带到一个重要定理:高斯—博内定理,它适用于紧致黎曼曲面,以及其他任何无边界的紧致曲面。

“边界”在拓扑中的定义很直观:圆盘是有边界的,亦即有明确界定的边缘,而球面则没有。在球面上,不管你朝哪个方向走,而且不管走多远,都不会碰到或接近任何边缘。

这个定理是在19世纪时由高斯和法国数学家博内(pierre bonnet)所提出的,它建立了曲面的几何性质及其拓扑性质之间的关系。

高斯—博内公式是说,上述曲面的总高斯曲率(或高斯曲率的积分)等于2π乘以该曲面的“欧拉示性数”(Euler characteristic)。而欧拉示性数x(希腊字母chi)则又等于2-2g,其中g是曲面的亏格(也就是曲面的“洞”数或“把手”数)。举例来说,二维球面没有洞,所以它的欧拉示性数是2。在此之前,欧拉提出了另一条求任何多面体欧拉示性数的公式:x=V-E+F,其中V是顶点数,E是边数,F是面数。以四面体为例,x=4-6+4=2,与球面的x值相同。一个立方体有8个顶点、12个边和6个面,所以x=8-12+6=2,再次和球面相同。因为欧拉示性数只和物体的拓扑,而非几何形状有关,那么这些几何相异,但拓扑相同的物体有着相同的x值当然很合理。欧拉示性数x是空间的第一个主要的“拓扑不变量”,也就是在拓扑等价但外观可能极为不同的各个空间上(例如球面、四面体和立方体),都能维持不变的性质。再回到高斯—博内公式。由此,二维球面的总高斯曲率是2πx2=4π。至于二维环面,因为它的x是0(2-2g=2-2=0),所以环面的总高斯曲率是0。把高斯—博内的原理推广到更高维,就会把我们带到陈氏类。

一个可赋向(或是有两面)的曲面,拓扑上可由其欧拉示性数来描述。计算多面体的欧拉示性数有一条简单的公式(多面体即是由平坦的面和直线的边所构成的形体)。欧拉示性数x等于顶点数减边数,再加上面数。对于本图所示的长方体,其值为2。四面体的欧拉示性数也是2(=4-6+4),四角锥也同样是2(=5-8+5)。因为这些物体都是拓扑等价的,所以它们理所当然有着相同的欧拉示性数2

陈氏类是由我的指导老师陈省身所发展的理论,是一种在数学上刻画不同复流形的概略方法。简单来说,如果两个流形的陈氏类不同,它们就不可能相同;反之却不一定成立:两个不同的流形可能具有相同的陈氏类。

复一维的黎曼面只有一个陈氏类,即第一陈氏类,而对于这个情况,正好等于欧拉示性数。一个流形的陈氏类数目,视其维数而定,例如复二维的流形具有第一和第二陈氏类。至于弦论所关心的复三维(或实六维)流形,则有三个陈氏类。它的第一陈氏类为六维空间中的实二维子空间(子流形)各对应到一整数,其中所谓子空间是原空间的一部分形体,就像纸张(二维)可以摆在办公室(三维)里一样。类似地,第二陈氏类为空间中的实四维子流形各对应一整数。第二陈氏类则为这个复三维(或实六维)的流形本身指定一个数字,也就是欧拉示性数x。事实上,对于任何复n维的流形,它的最后一个,亦即第n个陈氏类必定对应到流形的欧拉示性数。

但陈氏类究竟告诉了我们什么?或者说,指定这些数字的目的何在?其实这些数对于子流形本身并没提供多少信息,但是对于整个流形,它们却透露出许多重要的讯息。这在拓扑学是很常见的:当要了解复杂、高维的物体结构时,我们经常检视此物体中的子物体的数目和类型。

打个比方,假设你给身在美国的每个人都编上不同编号。那么,为个人指定的数字丝毫无助于理解他或她本人,但若把这些数字汇总起来,就可以呈现出更大的“物体”——美国本身——的重要情报,例如人口规模、人口成长率等。

我们还可以再举一个具体实例,来解释这个相当抽象的概念。让我们依照惯例,从很简单的物体开始。球面是一个复一维或实二维的曲面,它只有一个陈氏类,在这个情况等于欧拉示性数。回想一下,我们在第2章讨论过,居住在球形行星上时,关于气象学和流体力学的一些影响。例如风有没有可能在地表上的每一点都是由西向东吹?在赤道以及赤道之外的任何纬度线,都很容易想象风如何向东吹。但是在南极和北极的极点(这两点可以被视为奇点),却根本没有风,这是球面几何的必然结果。对于这种有着明显例外的特殊点的曲面,它的第一陈氏类不等于零。

第一陈氏类(对于本图中的二维曲面来说,正好等于欧拉示性数)与向量场中流动停滞的地方有关。在像地球的球面上,我们可以看到两个这样的点。如果流动是从北极往南极流(左上图),在两个极点上,所有表示流动的向量会彼此抵消,因此净流动为零。同理,如果流动是由西向东(右上图)还是会有两个根本没有流动的停滞点,同样又是出现在北极点和南极点,因为在此根本没有西向、东向可言。如果是环面,情形就不同了。在此,流动可以是铅直的(左下图)或水平的(右下图),都不会遇到停滞点。由于环面上的流动没有奇点,所以它的第一陈氏类是零,而球面的则不是零。

藏书吧推荐阅读:花昭叶深重生七零小军嫂免费阅读全文无限武侠江湖行梦幻西游:我有神级卡牌系统全球穿越,我是大富婆带着游戏技能闯诸天时光回溯爱你如初综漫:在刀剑神域里当驯兽师收手吧,阿祖,外面全是玩家!足球教练,我选择国足HP:重开二周目,我的天才儿子吕颂梨秦晟穿成早死的炮灰原配我怒嫁反派最新章节在线阅读治愈系男主的养成方法斗罗v:我的武魂是圣主数码选召之从鼻涕兽开始诗魂落魄迷踪【综奥】贝利亚:人间体不当人了问道章透视牛医穿越心动小镇:我带兄弟当肝帝无梦者会梦见杀戮神吗轮回乐园:法爷但是幸运亿一天一模拟,硬控乱世一百年星辰暖阳穿成早死的炮灰原配我怒嫁反派吕颂梨秦晟巅峰玩家我在无限副本中崩剧情惊!掉进了无限生存游戏我成神了公路求生之大玩家电竞王者:池神,别碰我buff奥特曼与怪兽虫族之穿成读心大佬的反派亡夫战锤40K:第二军团的秘密哼,电竞少女喜欢吃饼干怎么了荒岛:今天和死对头也在艰难求生率土:打全区的快乐你不懂崩铁:出云往事网游之武魏之强网游之无双修魔攻击随机增加属性斗罗V:我的武魂是克系,开局加入武魂殿成为黑暗四天王致力于干掉四圣兽从太监到皇帝绝世唐门:霍雨浩重生之独宠王冬圣经千问她带着三宝炸翻前夫集团啊大海快穿,男主他又又又杀疯了镇龙棺,阎王命光幕盘点:万界一起来追番炮灰女配在修仙界内卷成神九卷天书诸天无敌罗天蓝秀儿
藏书吧搜藏榜:透视牛医陈浩苏雪全民争霸,无限召唤流逐梦舞台:偶像蜕变之旅高维寻道者黑飞:又是一个要毁灭的世界吗火影忍者:春野樱的叛逆之路游戏场供应商开局满魅力,我用双修功法玩网游重生何雨柱,心狠手辣屠尽院内狗得分狂魔我在游戏杀敌成神网游之死灵法师阴阳诡店停球一亿次Nage新世界金牌辅助的王者时间电竞王者:池神,别碰我buff网游修仙纪有请下一位天才中单斗破苍穹之无上之境类似小说从天刀开始的游戏生涯一不小心把地球弄炸了怎么办从次元游戏崛起成为大作者拿稳BE剧本后成了全师门白月光网游:开局觉醒唯一SSS天赋提瓦特与直播那些事打职业的我绝不加班啊娄卿卿容淮的小说免费阅读综篮:从灌篮高手开始篮球风云皇家之最无限圣道叶罗丽:她们都因文茜而争风吃醋领主游戏:从漏风茅草屋开始提示全民冰窟求生,我能看到隐藏提示网游:一箭弑神!你管这叫平A?什么叫游走型辅助啊全民沙盘游戏开局海贼世界地爆天星kenshi 漂泊终地天降大富豪什么叫巫女型中单啊综影视,准备好了吗?木心来也!狼人杀之我是最强双面人[HP]错觉霍格沃兹:开局我在蛇院当首席!偷星九月天Multiverse复仇对象是京都美少女斗罗之诸天抽奖系统慕来来疯了穿成团宠小福宝后我开挂了全文免费阅读大结局
藏书吧最新小说:重生仙帝只是我的小弟四合院:魂穿何雨水,手撕何雨柱民国,从军阀到横扫亚洲快穿之我只想超脱啊绝命一枪:抗日风云录青灯照剑影全球岛主:开局抽到多子多福神雕:开局令东来,领悟浩然剑气综影视:小可怜我来宠大唐:开局救下李二,曝光我身份娱乐:全新的大蜜蜜就是香序列劫:洪荒碎星录平凡青云路僵约:开局编辑盘古基因娱乐:杨老板说我肾功能不错陨星武脉大明铁血帝:吾乃天启,重塑乾坤大明:剩30天亡我靠纳妾救天下我的女友是个狐狸精大秦:扶苏他开挂杀疯了!大明仙缘:我的皇孙在幕后医魄封神?孤大商称霸洪荒大佬:我的纹身能加点谍战:我知道你的隐秘垂涎:无声告白捡来的玉佩通仙界星际纪元:龙影传奇缅北囚笼:血色地狱她把黑火药甜成了糖沪上奕重生之炼狱归来诸天从射雕英雄传开始算命吗?超准还送打脸服务独宠,娇妻的无敌马甲被嫌弃的Omega她炸了星际青灯再启:与反派的前世戏神:被六大灭世病娇强制爱后昆仑帝龙决抗战兵王宫斗系统骚操作指南灵气复苏:你是我祖宗?!孤剑残雪录高维系统:我在诸天炼神师姐每天都在走火入魔闲来无事凑热闹我在八零搞事业新鸳鸯蝴蝶梦之天煞孤星癌症晚期,为活命我向鬼疯狂借寿异界佣兵:我的左轮会修炼