藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的 cramer 悖论就是一个漂亮的例子。

在描述 cramer 悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到 9 组不同的解,因此两条三次曲线最多有 9 个交点。另外,三次曲线的一般形式为

x^3 + a·x^2·y + b·x·y^2 + c·y^3 + d·x^2 + e·x·y + f·y^2 + g·x + h·y + i = 0

这里面一共有 9 个未知系数。

代入曲线上的 9 组不同的(x, y),我们就能得出 9 个方程,解出这 9 个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的 9 个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于 9 个点”和 “ 9 个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这 9 个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

cramer 和 Euler 是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是 1744 年 9 月 30 日 cramer 在给 Euler 的信中提出来的。

在信中, cramer 摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用 9 个点唯一地确定下来,两条三次曲线可能产生出 9 个交点。

cramer 向 Euler 提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler 心中的疑问不比 cramer 的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748 年, Euler 发表了一篇题为 Sur une contradiction apparente dans la doctrine des lignes courbes (关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

正如大家所想,矛盾的源头就是, 9 个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。

Euler 试图向人们解释这样一件事情:曲线上的 9 个点虽然给出了 9 个不同的方程,但有时它们并不能唯一地解出那 9 个未知数,因为有些方程是废的。

在没有线性代数的年代,解释这件事情并不容易。

Euler 举了一个最简单的例子:方程组

3x ? 2y = 5

4y = 6x ? 10

表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以 2 再移项后就直接变成第二个方程了。

换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。

当然,这只是一个最为简单的例子。

在当时,真正让人大开眼界的则是 Euler 文中给出的三元一次方程组:

2x ? 3y + 5z = 8

3x ? 5y + 7z = 9

x ? y + 3z = 7

这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。

因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。

Euler 还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。

类似地, 9 个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。

究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?

Euler 承认,“要想给出一个一般情况下的公式是很困难的”。

此时大家或许能体会到, Euler 提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。

包括 cramer 在内的数学家们沿着 Euler 的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。

没错,这个 cramer 正是后来提出线性代数一大基本定理—— cramer 法则——的那个人。

藏书吧推荐阅读:花昭叶深重生七零小军嫂免费阅读全文无限武侠江湖行梦幻西游:我有神级卡牌系统全球穿越,我是大富婆带着游戏技能闯诸天时光回溯爱你如初综漫:在刀剑神域里当驯兽师收手吧,阿祖,外面全是玩家!足球教练,我选择国足HP:重开二周目,我的天才儿子吕颂梨秦晟穿成早死的炮灰原配我怒嫁反派最新章节在线阅读治愈系男主的养成方法斗罗v:我的武魂是圣主数码选召之从鼻涕兽开始诗魂落魄迷踪【综奥】贝利亚:人间体不当人了问道章透视牛医穿越心动小镇:我带兄弟当肝帝无梦者会梦见杀戮神吗轮回乐园:法爷但是幸运亿一天一模拟,硬控乱世一百年星辰暖阳穿成早死的炮灰原配我怒嫁反派吕颂梨秦晟巅峰玩家我在无限副本中崩剧情惊!掉进了无限生存游戏我成神了公路求生之大玩家电竞王者:池神,别碰我buff奥特曼与怪兽虫族之穿成读心大佬的反派亡夫战锤40K:第二军团的秘密哼,电竞少女喜欢吃饼干怎么了荒岛:今天和死对头也在艰难求生率土:打全区的快乐你不懂崩铁:出云往事网游之武魏之强网游之无双修魔攻击随机增加属性斗罗V:我的武魂是克系,开局加入武魂殿成为黑暗四天王致力于干掉四圣兽从太监到皇帝绝世唐门:霍雨浩重生之独宠王冬圣经千问她带着三宝炸翻前夫集团啊大海快穿,男主他又又又杀疯了镇龙棺,阎王命光幕盘点:万界一起来追番炮灰女配在修仙界内卷成神九卷天书诸天无敌罗天蓝秀儿
藏书吧搜藏榜:透视牛医陈浩苏雪全民争霸,无限召唤流逐梦舞台:偶像蜕变之旅高维寻道者黑飞:又是一个要毁灭的世界吗火影忍者:春野樱的叛逆之路游戏场供应商开局满魅力,我用双修功法玩网游重生何雨柱,心狠手辣屠尽院内狗得分狂魔我在游戏杀敌成神网游之死灵法师阴阳诡店停球一亿次Nage新世界金牌辅助的王者时间电竞王者:池神,别碰我buff网游修仙纪有请下一位天才中单斗破苍穹之无上之境类似小说从天刀开始的游戏生涯一不小心把地球弄炸了怎么办从次元游戏崛起成为大作者拿稳BE剧本后成了全师门白月光网游:开局觉醒唯一SSS天赋提瓦特与直播那些事打职业的我绝不加班啊娄卿卿容淮的小说免费阅读综篮:从灌篮高手开始篮球风云皇家之最无限圣道叶罗丽:她们都因文茜而争风吃醋领主游戏:从漏风茅草屋开始提示全民冰窟求生,我能看到隐藏提示网游:一箭弑神!你管这叫平A?什么叫游走型辅助啊全民沙盘游戏开局海贼世界地爆天星kenshi 漂泊终地天降大富豪什么叫巫女型中单啊综影视,准备好了吗?木心来也!狼人杀之我是最强双面人[HP]错觉霍格沃兹:开局我在蛇院当首席!偷星九月天Multiverse复仇对象是京都美少女斗罗之诸天抽奖系统慕来来疯了穿成团宠小福宝后我开挂了全文免费阅读大结局
藏书吧最新小说:列车求生,我的极尽升华梦幻西游:我的氪金你们学不来!网游:我启动了众生平等器NBA:开局就没有见过贷款打球1996:科比的第二人生热血传奇之我的训魔传奇热血传奇之天龙破晓龙岛异兽之莫十三发工资吃烧烤竟然穿越到大话全球魔域:我的弑神掠夺系统玩家降临:这BOSS咋还不死!疯了吧?你管这叫58号落选秀?HHH我的无限地下城HHH毒警终结者:从墨西哥边境开始开局蚊子,靠爆兵屠穿所有星球让你高空求生,你修炼成仙网游之烬煌焚天录魅狐的我,是个男孩子也没问题吧全能中场,为银河战舰护航!全民木屋求生:开局SSS级天赋我把生存游戏玩成了养成我在网游里点满奇葩技能我在曼联搞抽象我成了异世界唯一神明!包工头?游戏逆世之重铸传奇游戏狂飙:异界新纪元直播爆火!开局吓哭S级玩家网游,幻想的轨迹全民航海,但我是舰娘?游泳:绑定人气系统,成为泳道之国足弃将?我把泰山带成亚洲王全民领主:凡人三国传全民穿越:开局捡到卫子夫!大航海:开局天胡,一路无敌我们比他们多一个世界清醒者游戏人在出租屋,统治星际帝国无限叠毒的话我选弓箭手空姐的NBA男友NBA:开局三连冠,詹库杜哭了网游:我的毒素能无限叠加你一个牧师,谁告诉你给怪加血的全民领主:拘灵炼器摸金斩鬼我18岁,和平精英已封神不灭星穹:47岁努力王者异界入侵?一把抓住炼化成游戏!NBA,女明星终结者辅助科比三连冠后,我接棒湖人开发游戏,竟被全网称作神!17岁金球?鲁尼将十号双手奉上