藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

时间一分一秒的过去,很快就过去了两个小时。

即使Imo第二场考试的题目很难,但是基本所有参赛选手现在都在解第二道题当中。

至于梁云,他也在开始对第三题的斐波拉契数列问题下手了。

让他证明斐波拉契数列关于是否存在无穷多个素数,实在是有些不轻松。

让他证明自然数中有无穷个素数还好说,但是证明这个数列中有无穷个素数,那可不是一个简单的事情,因为对于一个数列中是否存在无穷多个素数,这几乎可以称为一种随机事件了,想要完成,相当的困难。

不过也不是证明不出来,毕竟现在他的数学已经达到了LV4,又拥有智慧光环与贤者光环的加持。

想要证明一个数列中是否存在无穷多个素数还是有很大可能性证明出来的。

于是,他便开始在脑海中思考应该如何来证明。

在脑中思考了五分钟后,他开始在草稿纸上写下一个数列,1,1,2,3,5,8,13,……然后根据这个数列开始演算。

通过观察草稿纸上的演算数列,他很快就有灵感了,立马在草稿纸上运算起来。

首先将其通项公式写为An-(An-1)-(An-2)=0。

“然后可以利用解二阶线性齐次递回关系式的方法,那么它的特征多项式是……”

【得λ1=1\/2(1+√5),λ2=1\/2(1-√5)】

【即有An=c1λ1^n+c2λ2^n,其中c1,c2为常数,我们知道A0=0,A1=1,因此……】

【最终解得c1=1\/√5,c2=-1\/√5。】

【这里引入素数定理,π(x)= Li(x)+ o(xe^(-c√lnx)(x→∞),其中Li(x)=……】

写到这里,梁云再一次陷入了困难。

因为他想要将两者结合起来,只要将两者结合起来,那么他就能完成证明了。

因为,素数定理显然是基于有无穷多个素数的结论下得出的,只要两者能够包容起来,并且区域都属于无穷大,那么即可得出结论。

但是怎么样才能够两者结合起来他却没有一丝头绪。

想要将两者结合起来,找到其中的联系点,并不容易,中间还需要进行更加繁多处理。

因此,他决定换一种思路,先将它们两个换一种形式,再下手。

但即使如此,在尝试了各种方法后,他依然发现存在太大的难度,这其中仿佛有着难以跨越的鸿沟,阻止着他将上面列出的那两个式子结合起来。

“果然,数学界未解的难题不是这么容易被解决的。”

再一次陷入困难当中的梁云感慨道。

斐波拉契数列关于是否存在无穷多个素数问题是当今国际数学界的未解难题之一。

虽然其不如现今数学界的黎曼猜想、bSd猜想、霍奇猜想等出名,知道的学生也比较少。

但不可否认斐波拉契数列关于是否存在无穷多个素数问题依旧是当今数学界的未解难题之一。

“我不信了,达到数学LV4还证明不出来……”

梁云较真了,他一定要将这道题给证明出来,在Imo考试结束前,将它给证明出来!

时间随着笔头下的一个个公式、数字符号的出现,也渐渐的过去,进入了深度思维模式后,梁云在解题中时不时的就会有灵光一闪。

为他证明斐波拉契数列提供了思路。

但是距离完成证明还需要一个契机,一个可以让他将所有式子串联起来的契机。

“已经到最后一步了,但是还差点什么东西,才能将前后联系起来,完成证明!”

梁云感觉自己将这道题做到了最后的瓶颈。

“素数在斐波那契数列中的分布规律,必定有一个关系,对了,0.618……黄金分割?”

梁云眼中忽然一亮,但很快,他又拧起了眉头。

“不行,我没有研究过黄金分割,对这方面的知识储备不够啊!”

“或者是,我寻找一些其他的方法,来解题?”

随后,他再次从旁边扯来了一张草稿纸,脑海中继续思考。

“新的方法……新的方法……什么新的方法能够搞定呢?”

“对了,解析延拓!”

他忽然想起了自己曾经了解过的这个知识,在他自学高数时他有看过这方面的书本,对复变函数的知识有了解。

而这个知识刚好是在复变函数里面的,因此他完全可以使用解析延拓来解题,来完成最后的证明。

有了思路后,他开始了演算,证明。

时间一分一秒的过去,当其他选手都做完第二题后,对着第三题发呆茫然时,梁云却是在草稿纸上写满了关于第三题斐波拉契数列关于是否存在无穷多个素数的证明过程。

“桥,总算是给搭起来了!”

看着满满的草稿纸,梁云露出出了笑容,通过解析延拓,他总算是将前后给联系起来了,终于能够继续往下完成后面的证明了。

于是接下来,他继续在草稿纸上写了起来,将他之前推导的等价式子和这个全新的函数联系了起来,联系起来。

【……引理3、4,由式5、式7、式8,可得……】

【由此可见,F(x)和π(x)在定义域上完全相等,根据素数无穷性……易得数列Fn中有无穷个素数。】

【证毕。】

一笔一划地写下最后两个字,梁云长出一口气。

“完成了。”

“终于完成了。”

“总算是将这道题给证明出来了,实在是不容易啊。”

他感慨一声,而就在这个时候,系统悦耳的声音响起。

“恭喜宿主完成斐波拉契数列关于是否存在无穷多个素数问题的证明,奖励数学学科经验10万,大脑开发程度增长1%。”

听到系统的奖励报告后,梁云惊讶的张大了嘴巴。

解决一道题居然奖励了他十万经验,这么太……爽了,简直爽死了!

不光是奖励了十万数学经验,还给他增长了1%的大脑开发程度,更是爽歪歪。

要知道,想大脑开发程度可是很难的,平时刷很多Imo才增长百分之零点零几。

现在一道题就给他增长了1%的大脑开发程度,实在是赚大发了。

不过这也是应该的,毕竟这道题可是当今数学界的未解难题斐波拉契数列关于是否存在无穷多个素数问题。

它的难度不是不小啊,不然也不会是数学界的未解难题。

“真爽啊……”

看着试卷上已经被证明出来的第三题,以及系统所给出的奖励,梁云心中甚是喜悦。

随即,他抬头看了看时钟,发现距离考试结束还有五分钟。

“呼~差一点考试就结束了,还好证明出来了。”

有些庆幸自己能够在考试结束前将第三题证明出来,否则等考试时间到了,他就只能停笔了,就不能体验到系统给出的奖励喜悦了。

“铛铛铛……”

考试铃声响起,第三十三届Imo正式结束!

……

藏书吧推荐阅读:绝代武神末世天师的位面交易系统末世:组队就变强我统领万千女神全球神只时代囤货勿扰,娇软美人在末世赢麻了末日,绿茶前女友跪求我收留古穿未之星际宠婚末日从全球冰封开始末世桃源,养生系神豪红夜危机,异变后世界国之重器开局完虐四个丧尸病友恐怖都市内幻想世界大穿越快穿之病娇男神有毒海贼:玛丽乔亚也没写禁止钓鱼啊宇宙职业选手反派他迷人又危险星际田园梦你好,人类!【第一篇】污染游戏星际之有间杂货铺只想退休的我被迫成了大将我是个假外星人星际战争领主在赛博世界当星际佣兵末日,姐有系统做圣母怎么了?诛八天,一拳打碎末日安全屋亡之诅咒末世:开局一间无忧酒店钢铁地球入职战忽局:表面吹牛,其实都有末世空间:我和奶萌猫咪疯狂囤货沙暴末世:我储水十万亿吨!盛唐刑官此世真魔好孕快穿:娇软女主在be文求生说好的末世呢沉浸式死亡游戏我家水库真没巨蟒啊记忆之界:数字永生的代价诸天角色扮演电影宇宙任我行冰河末日:觉醒空间异能,噶绿茶霸宇战星灵能末世:废墟上的超维觉醒末日小民末世:美女太多,别墅住不下了重生者:末世生存战快穿之今天宿主他干掉反派了吗
藏书吧搜藏榜:诡神冢生活达人在末世末世灾变,我能合成进化剂丧尸正太末世小饭馆末日战帝网游之剑震天下开局一块板,苟成华夏之光时空行走者穿书后,我成了修真人士星际之鬼眼萌妻诸天从西游开始星际内卷王快穿之攻略的反派都崩人设了邪气宿主总掉线星际直播万人迷,帝国大佬争着宠我在克系世界死亡回档星海天启:直面终结无限加班欢迎加入交换游戏绝世宠物重生末世有空间星火仙帝快穿之我家宿主又碰瓷了我正在穿书填坑中快穿之厉害了我的宿主费米悖论之双月入侵给反派戴上圣父光环明灭之间元始地球不屈:混沌秩序强者勇闯三国丧尸世界之生存日记懒唐神奇宝贝之决战白银之巅系统:我在末世种玉米嫁七零糙汉后,我双胞胎体质藏不住三万年以后宿主她是撩人精末日重生之爱上你超时空战争要塞百宝农庄卡牌风暴末世:多子多福,从顶级女星开始超级蛋蛋闯进太阳系的阿波斯半仙文明末世重生一块砖海贼:最强副船长,领悟任何果实核平诸天万界末世大狙霸
藏书吧最新小说:我和IT博士的探灵日记鲛人女配觉醒,毛茸茸大佬争着宠欧皇海上求生?反派他妹只想苟命谁让她误闯废土的!在末日游戏里当农场主惊悚:国家把我F级天赋玩出花!恶毒男配都在我的修罗场末世恶毒女配?我靠十倍返还躺赢穿越后我靠蘑菇干翻虫子只想安静种个田,全员逼我当大佬天灾囤货,我靠毛茸茸在末日躺赢末日降临:从修仙界回来后无敌了末世灾变:我靠收割反派暴富穿成乱世寡嫂,靠空间南迁搞基建穿进男频文,我在末世捡垃圾!我的电脑里有个神级文明牺牲的他与保护的她星河苍芒幻厅恶毒向导不装了,全员火葬场吧末世:我捡的废物都成了神明大佬海洋求生:我靠无限抽卡带飞祖国末世列车,我靠预言读档成为榜一梦里穿越十二宫植物成珍稀?而她一天能种一千亩渣女摆烂后,五个前男友扯头花星际:被迫继承疗养院的餐厅星际娇软雌性,被六S大佬强绑定我在末世被营销成神无限副本:告白后我被邪神盯上了快穿:绿茶大佬今天又被钓了渣雌死遁五年回归,黑化父子爱惨病弱美人在诡异世界封神克系末日摆摊,邪神被我喂成萌宠穿成残次品?全星际大佬嗜我成瘾天才俱乐部雄多雌少,我靠木系异能风生水起星际写小说,雄兽们跪求我更新末日求生:我靠农场系统堆满粮仓兵家镇万界末世种田求生:捡个崽崽开农场我在末日盖房子快穿:硬核宿主玩转三千世界穿成稀有向导,误入哨兵修罗场末世海上求生,在灯塔建造度假村生育值0?兽世大佬们全是我榜一荒野求生:毛茸茸同居手册乙游对象非人类,各个为我修罗场恶雌娇又欲,五个兽夫缠欢上瘾抽卡逆袭后,五个未婚夫悔哭了